2021年4月15日 星期四

【Intel OpenVINO™教學】小孩才作選擇,AI推論速度及準確度我全都要─OpenVINO Post-Training Optimization Tool簡介


身為一個人工智慧(AI)從業人員,好不容易費盡千辛萬苦訓練好一個模型並且得到不錯的推論準確度後,總會遇到客戶抱怨「這個模型太大塞不進我的硬體,這個推論的速度不能再快一些嗎?」。當換了一個較小、速度快一點的模型後,又被抱怨「這個推論的準確度不能再高一點嗎?」。此時腦中總會想起星爺的電影「九品芝蔴官」豹子頭的那句經典台詞「我全都要」,難道就沒有折衷一點的辦法,讓我在AI推論速度、準確度和模型大小都能滿足嗎?

INTEL OpenVINO聽到大家的心聲了,於是推出了「Post-Training Optimization Tool (以下簡稱POT)」來幫助大家,在不用重新訓練模型的情況下,只需執行幾個簡單的命令,模型瞬間縮小,且在僅僅損失一點點推論準確度情況下就能得到1.1到3.3倍左右推論速度的提升。而POT究竟用了何種方式才能達成這個結果,接下來就從「何謂量化(Quantization)」、「量化算法(Quantization Algorithms)」、「使用DL Workbench快速優化」、「安裝POT相依套件」幫大家作一些簡單說明,最後再用一個「影像分類MobileNet模型優化」實際案例說明其執行方式及優化結果,希望能讓大家有更愉快的AI落地開發體驗。

2021年4月9日 星期五

【課程簡報】20210409_東南資科_創新應用實務03_OpenCV彩色影像處理

很高興今天受東南科技大學資訊科技系謝昌勳老師邀約擔任業師,和同學們分享「看見新世界─OpenCV彩色影像處理」,此次主要分享重點如下。

  • 色彩空間簡介
  • 彩色影像分離
  • 色彩提取
  • 影像平滑與銳化
  • 卷積與邊緣提取
  • 影像直方圖強化
  • 基本繪圖函數

完整課程範例:https://github.com/OmniXRI/tnu_opencv

(點擊圖片放大)

 

【頂置】簡報、源碼、系列文快速連結區

常有人反應用手機瀏覽本部落格時常要捲很多頁才能找到系列發文、開源專案、課程及活動簡報,為了方便大家快速查詢,特整理連結如下,敬請參考! Edge AI Taiwan 邊緣智能交流區 全像顯示與互動交流區 台科大(NTUST) 人工智慧與邊緣運算實務 開南大學...